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Intrinsic defect processes in Ca–Al–Fe–O
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Atomistic-scale computer simulations, based on the ionic model, have been used to study
intrinsic defect processes in a range of Ca–Al–Fe–O cement-phase compounds. The
simulations accurately reproduce the structures of this diverse set of materials and predict
the large disorder observed between the aluminium and iron sublattices in C4AF.
Additionally, the calculations predict that the extent of intrinsic disorder varies considerably
from material to material, as does the dominant mode of disorder. Finally, the calculations
indicate that clustering of defects is likely to play an important role in the mass transport
mechanisms of all the compounds studied. C© 1999 Kluwer Academic Publishers

1. Introduction
The impetus for studying defects in C4AF (C= CaO,
A = Al2O3, and F= Fe2O3) has been the direct influ-
ence the defects have on colouring in cement clinkers;
however, defects in other cement phases have gone un-
studied largely because they do not exhibit such overt
effects. Since defects play important roles in trans-
port phenomena, phase equilibria, and microstructural
properties, information concerning defect processes in
the other phases is clearly desirable. Unfortunately,
determining intrinsic defect properties in oxides via
experiment is often difficult because extrinsic defects
dominate. Experiments on cement-phase oxides are
complicated further by a complex formation chemistry,
which results in highly variable concentrations of im-
purities, leading to variable extrinsic defect properties.
Consequently, such experiments are often not practical
in cement phases.

As an alternative, defect energetics of ionic materials
can be predicted using computer simulation. Because
of extensive relaxation and consequential symmetry
breaking associated with point defects, computational
resources are not sufficient to thoroughly characterize
all disorder processes in these complex oxides using
ab initio quantum mechanical techniques. Fortunately,
with materials that are largely ionic, it is possible to use
a Born-like model of the lattice. Then by employing
the Mott-Littleton approximation, computation time is
reduced sufficiently to allow a complete study of disor-
der while maintaining a physically meaningful descrip-
tion of the lattice. Although this computational method
is less rigorous than many quantum mechanical meth-
ods, the integrity of the calculations is aided by using
a single, consistent set of potentials that model several
compounds that are related by composition. In addi-
tion, the use of a consistent set of potentials allows a
more straightforward comparison of defect behaviours
among related materials.

Other simulations on CaO [1], Al2O3 [2], and Fe2O3
[3] have shown (as does the present work) that disor-
der enthalpies are quite high, making observation very
difficult. This alone may explain the limited amount of
experimental data regarding intrinsic disorder in these
materials. Quantitative experimental data only exists
for Al2O3 [4, 5] and agrees well with the calculated
disorder enthalpies; however, large uncertainties in the
measurements illustrate the difficulty in measuring the
low concentrations of defects associated with such high
enthalpies. Research on C4AF [6] has shown quali-
tatively that intrinsic defects are impurity controlled,
which is indicative of high Schottky and Frenkel dis-
order enthalpies. Such a sparse amount of experimen-
tal data concerning intrinsic disorder in Ca–Al–Fe–O
cement-phase compounds makes structural data the pri-
mary source for checking atomistic simulation param-
eters. Therefore, to extend defect calculations beyond
those on CaO, Al2O3, and Fe2O3, it is pertinent to in-
clude C4AF and as many other related structures as
possible in order to provide additional structural feed-
back. It is then a simple matter to extend the disorder
analysis to those materials, which include CA, C2A,
C3A, CF, C2F, CA2, CA6, and C4AF.

2. Methodology
The extent of the disorder present in a material depends
on the increase in enthalpy accompanying the creation
of defects associated with the disorder. The concen-
trations of defects involved in disorder processes are
described by the mass action equations, which depend
on this increase in enthalpy. When the concentration of
defects is small, the nonconfigurational entropy contri-
bution to the mass action equation is negligible, and the
defect behaviour of a material is effectively specified by
the increase in enthalpy. The method used in this study
determines the enthalpy of a defect by calculating the
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interaction energy between a defect and an otherwise
perfect lattice.

To calculate these energies, a Born-like model is
used in which the ions assume their formal charges. In
this approximation, the lattice energy arises from three
sources: Coulombic interactions between ions, a shell
model description of atomic polarisation, and an ad-
ditional interaction between ion pairs described by pa-
rameterized short-range forces that account for electron
cloud overlap and dispersion. In these calculations, the
Coulombic forces are summed using Ewald’s method
to provide convergence. The shell model approximates
atomic polarization by modelling each polarizable ion
as a massless shell of chargeY that is able to move with
respect to a massive core with chargeX, subject to a
restraining harmonic force constantk [7]. To represent
the short-range interactions, ion pairs interact through
Buckingham potentials

E(r ) = Ae−r/ρ − C/r 6

wherer is the distance between two atomic species
(each cation–anion pair and the anion–anion pair) and
A, ρ, andC are adjustable parameters. The magnitude
of this interaction falls off quickly with increasingr ,
and only ions separated within a certain cut-off distance
(17.52Å in this study) are considered.

The short-range potential parameters are determined
by varying their values until the predicted lattice pa-
rameters match experimental data. In each case, the
predicted structure is that which minimizes the total en-
ergy of the perfect lattice. Conventionally, a parameter
set is fitted for each material, reproducing the structure
as well as possible and closely reproducing dielectric
and elastic constants. Such parameters are optimized
for specific ion coordinations and bond lengths, and
shifts away from equilibrium, such as those associated
with relaxation around intrinsic defects, may be under-
estimated. Since defect enthalpies are greatly affected
by distortions in the crystal immediately around the
defects, this can lead to errors in the predicted defect
enthalpies. Thus, a parameter set that can describe the
potential energy surface away from equilibrium is re-
quired. This is achieved by deriving a single, consistent
set of short-range potential parameters simultaneously
fitted to a large number of related materials with differ-
ing cation-oxygen coordinations and bond lengths. The
resulting parameters still reproduce individual struc-
tures well, and one may better compare relative disorder
enthalpies of the various materials.

The perfect lattice energy is determined by start-
ing with the experimentally determined structure and
then adjusting both ion positions and lattice vectors, us-
ing the Newton-Raphson minimization procedure, until
each ion experiences zero force. To calculate the en-
thalpy of a defect, such as a vacancy, an interstitial ion,
or a substitutional ion, the Mott-Littleton approxima-
tion is used [8]. This method begins with the relaxed
perfect lattice and then places a defect in the centre of
a spherical region I. All ion positions in region I are
allowed to relax in response to the defect, and inter-
actions are summed over all pairs of ions within the
region. The radius of region I in these calculations is

11.68Å. Larger radius values than this make negligi-
ble difference to predicted defect energies. The outer
region, region II, extends to infinity, and the interaction
of the region II ions with the lattice defect is treated as
a dielectric response in accord with the Mott-Littleton
approximation. To ensure a smooth transition between
regions I and II, an interfacial region, region IIa, is in-
troduced. Ion positions within region IIa are allowed
to vary, minimizing interactions between all ions in re-
gion I and minimizing the Mott-Littleton response in
region II. The region IIa radius in these calculations is
29.6Å, and the whole procedure is executed with the
CASCADE code [9].

3. Results and discussion
Essential to the defect modelling process are well-
parameterized, short-range potentials. As such, the
short-range potential parameters and their ability to
reproduce the experimentally observed structures are
presented first. Subsequently, the intrinsic disorder en-
thalpies are reported. Each of these enthalpies is deter-
mined by summing the calculated enthalpies of defects
that are components of the corresponding defect reac-
tion. Finally, stabilities of clusters comprised of intrin-
sic defects are listed in terms of cluster binding energies.

3.1. Perfect lattice calculations
The set of potentials used in this study are summarized
in Table I. Some are adopted from previous works,
while others are derived specifically for this work.
These parameters model the experimental structures
well, giving a good foundation for the defect study.

The O2−–O2−, Al3+–O2−, and Fe3+–O2− poten-
tials have been developed in other studies. The O2−–
O2− potential has been used successfully to model a
wide range of materials including CeO2 surfaces [10],
SrTiO3 interfaces [11], intrinsic defects in ZnCr2O4
[12], ZnO–In2O3 intergrowth structures [13], and de-
fects inβ–Al2TiO5 [14]. The extent to which the O2−–
O2− potential is successful emphasizes how well it en-
compasses very diverse crystallographic environments.

TABLE I Potential parameters

Short-range potentials Reference

O2−–O2− A 9547.96 eV [2, 10–15]
ρ 0.21916 Å−1

C 32.0 eVÅ6

Al3+–O2− A 1725.2 eV [2]
ρ 0.28971 Å−1

C 0.0 eVÅ6

Fe3+–O2− A 1414.6 eV [15]
ρ 0.3128 Å−1

C 0.0 eVÅ6

Ca2+–O2− A 1186.48 eV this work
ρ 0.339 Å−1

C 0.0 eVÅ6

Shell model parameters

Oxygen Y −2.80 |e| [2]
X 0.80 |e|
k 54.8 eVÅ−2
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TABLE I I Summary of structural parametersa

Percent
Compound Property Calculated Observed agreement Reference

Al2O3 a (Å) 4.8110 4.7628 101.01 [18]
c (Å) 12.7316 13.0032 97.91
c/a 2.65 2.73 97.07
u 0.352 0.352 100.00
v 0.306 0.309 100.98

Fe2O3 a (Å) 5.048 5.035 100.27 [18]
c (Å) 13.35 13.72 97.34
c/a 2.64 2.72 97.06
u 0.355 0.353 99.44
v 0.3 0.306 102.00

CaO a (Å) 4.8104 4.8105 100.00 [19]
CA a (Å) 8.789 8.700 101.02 [20]

b (Å) 8.046 8.092 99.43
c (Å) 15.602 15.191 102.71
β (◦) 90.54275 92.28333 100.29

C2A a (Å) 5.46 5.23 104.48 [21]
b (Å) 14.41 14.45 99.71
c (Å) 5.32 5.41 98.39

C3A a (Å) 15.430 15.263 101.10 [22]
CA2 a (Å) 13.0149 12.8398 101.36 [23]

b (Å) 9.0946 8.8624 102.62
c (Å) 5.4206 5.4311 99.81
β (◦) 108.4325 106.8333 101.50

CA6 a (Å) 5.606 5.564 100.75 [24]
c (Å) 21.685 21.892 99.05

CF a (Å) 9.18 9.23 99.44 [25]
b (Å) 10.724 10.705 100.18
c (Å) 3.024 3.024 100.00

C2F a (Å) 5.4776 5.4253 100.96 [26]
b (Å) 14.6963 14.7687 99.51
c (Å) 5.610 5.598 100.21

C4AF a (Å) 5.592 5.598 99.89 [17]
b (Å) 14.5 14.6 99.31
c (Å) 5.4266 5.4253 100.02

asignificant figures from references.

Two oxygen shell model parameter sets associated with
this O2−–O2− potential already exist, and the set in
Table I is the one that best reproduces the mixed oxide
structures in this work. The Al3+–O2− parameters were
derived by fitting to the Al2O3, MgAl2O4, Al2TiO5,
and Ca3Al2O6 structures using the above O2−–O2− po-
tential, providing varied cation–oxygen coordinations
and separations [2]. Likewise, the Fe3+–O2− potential
was fitted toα–Fe2O3, β–Fe2O3, Fe3O4, ZnFe2O4, and
MgFe2O4 [15].

The Ca2+–O2− potential parameters are refined from
those used in earlier studies [2, 16] by fitting to the struc-
tures of CaO, CA, C2A, C3A, CF, C2F, and C4AF. The
predicted structural data and its agreement with exper-
imental data are presented in Table II. The accuracy of
the defect enthalpies depends foremost on unit cell vol-
ume, which is therefore a critical indicator of the qual-
ity of a parameter set. The volume agreement, shown in
Table III, is good, especially considering the diversity
of structures modelled by this single set of potentials.

3.2. Intrinsic disorder
With the perfect lattice enthalpies determined, the
change in enthalpy accompanying the presence of de-
fects is calculated. The individual defect enthalpies are

TABLE I I I Predicted unit cell volumes

Compound Calc. volume/exp. volume (%)

Al2O3 99.91
Fe2O3 97.86
CaO 100.00
CA 103.16
C2A 102.50
C3A 103.32
CA2 102.90
CA6 100.55
CF 99.60
C2F 100.68
C4AF 99.23

not listed; rather, the enthalpies of Schottky disorder
(cation and anion vacancies in stoichiometric ratios),
Frenkel disorder (ion interstitial–vacancy pairs), and
anti-site disorder (exchange of cation species between
lattice sites) are reported. In each case, the reaction
enthalpies are tabulated assuming that the component
defects are spatially isolated from each other. The effect
of defect clustering is considered in a later section.

Disorder reaction enthalpies are reported in electron
volts per defect (1 eV= 1.603× 10−19 Joule). The sig-
nificance of a disorder reaction is judged according to
the resulting concentrations of defects, which are re-
lated to the formation enthalpy through standard mass
action equations. For example, in CaO the concentra-
tions of defects associated with the Schottky reaction
are given by

[V ··O][V ′′Ca] = e−1h/kT

where [x] represents the concentration of speciesx,
1h is the total Schottky formation enthalpy,k is the
Boltzmann constant, andT is the temperature in Kelvin.
Since in CaO the Schottky reaction has the lowest en-
thalpy, it is the dominant mode of disorder. Conse-
quently, at high temperatures one may assume

[V ··O] = [V ′′Ca] = e−1h/2kT

Thus, a hypothetical, total Schottky reaction energy of
4.0 eV (2.0 eV per defect) in CaO would result in about
1 ppm oxygen vacancies and 1 ppm calcium vacan-
cies at 1400◦C. In general, the exponent is divided by
the number of defects involved in the reaction, and the
division by two in the above equation is a specific in-
stance of this. For this reason, the reaction enthalpies in
Tables IV–VI are reported as eV per defect, and the rela-
tive importance of the various reactions can be assessed
directly. For the temperatures at which cement clinkers
are processed (i.e. 1300–1400◦C), reaction enthalpies
above 3 eV per defect will not result in significant de-
fect concentrations even in pure materials. Defects of
reactions with enthalpies between 1 and 2 eV per defect
are barely observable in pure material, and are easily
obscured when even small concentrations of aliovalent
impurities are present. Below 1 eV per defect, intrinsic
defects can become important, even in the presence of
impurities.

The results of Schottky disorder calculations are
shown in Table IV, and the Frenkel disorder results
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TABLE IV Schottky disorder reaction enthalpies

Full Ca partial Fe partial Al partial
Schottky Schottky Schottky Schottky
(eV per (eV per (eV per (eV per

Compound defect) defect) defect) defect)

Al2O3 5.78 — — —
Fe2O3 5.15 — — —
CaO 3.54 — — —
CA 4.51 3.80 — 4.68
C2A 3.52 3.38 — 3.50
C3A 3.15 2.19 — 4.22
CA2 4.53 4.33 — 4.41
CA6 5.72 3.89 — 3.90
CF 2.99 2.16 3.33 —
C2F 3.30 3.02 3.48 —
C4AF 3.52 3.09 3.98 3.65

TABLE V Frenkel disorder reaction enthalpies

Ca Frenkel Fe Frenkel Al Frenkel O Frenkel
(eV per (eV per (eV per (eV per

Compound defect) defect) defect) defect)

Al2O3 — — 7.35 5.66
Fe2O3 — 6.78 — 5.02
CaO 5.64 — — 5.70
CA 3.03 — 5.55 3.42
C2A 5.08 — 6.07 2.20
C3A 1.09 — 5.84 3.02
CA2 3.16 — 5.01 2.87
CA6 5.70 — 5.52 3.54
CF 5.67 7.09 — 4.59
C2F 4.46 5.94 — 2.19
C4AF 4.52 6.67 6.16 2.33

TABLE VI Anti-site disorder reaction enthalpies

Ca–Fe Ca–Al Fe–Al
Anti-site Anti-site Anti-site

Compound (eV per defect) (eV per defect) (eV per defect)

CA — 2.73 —
C2A — 1.71 —
C3A — 1.94 —
CA2 — 3.60 —
CA6 — 3.91 —
CF 1.71 — —
C2F 1.43 — —
C4AF 1.98 2.12 0.20

TABLE VI I Defect clusters associated with Schottky disorder

Cluster binding energies (eV)

[V ··O:V′′Ca]
× [V ··O:V′′′Fe]

′ [V ··O:V′′′Fe:V
··
O]· [V ··O:V′′′Al ]

′ [V ··O:V′′′Al :V
··
O]·

Al2O3 — — — 3.72 8.92
Fe2O3 — 3.25 7.96 — —
CaO 0.89 — — — —
CA 1.63 — — 5.21 8.59
C2A 2.30 — — 4.46 8.12
C3A 1.07 — — 3.97 8.10
CA2 1.42 — — 4.98 6.96
CA6 1.42 — — 4.14 6.24
CF 1.63 2.86 5.54 — —
C2F 1.99 4.27 7.71 — —
C4AF 2.07 4.22 6.78 4.46 8.26

are shown in Table V. Schottky enthalpies are all too
high to be of significance except possibly the Ca partial
Schottky enthalpies of CF and C3A. Like the Schottky
disorder, most cation Frenkel enthalpies are also too
high to be important except, most notably, the calcium
Frenkel enthalpy in C3A. Oxygen Frenkel disorder ex-
hibits moderate enthalpies for C2A, C4AF, and C2F;
nevertheless, the calcium Frenkel reaction in C3A is
clearly more significant.

The results of anti-site disorder calculations are
shown in Table VI. In CA, CA2, and CA6, anti-site dis-
order is of no significance whatsoever. In C2A, C3A, CF,
C2F, and C4AF, Ca–Al and Ca–Fe anti-site disorder are
roughly as significant as the lowest enthalpy Schottky
and Frenkel reactions. In the case of Fe–Al anti-site
disorder in C4AF, the enthalpy is very low, indicating
that this is the most significant intrinsic disorder in any
of these materials. The predicted enthalpy is indicative
of high disorder, which is in good accord with exper-
imental data that indicates 24% disorder between the
iron and aluminium sublattices [17].

3.3. Selected defect clusters
The importance of defect clusters containing intrin-
sic defects was studied for clusters containing three
or fewer defects. The significance of a defect cluster
is determined by its binding energyBE, defined as the
gain in enthalpy when isolated defects form a cluster

BEcluster=
[ ∑

components

Edefect

]
− Ecluster

so more positive binding energies represent more sta-
ble clusters. The defect cluster enthalpyEcluster is de-
termined by introducing the whole cluster into region I
of the Mott-Littleton calculation.

The binding energies are divided into two tables—
one for Schottky disorder related clusters and one for
clusters associated with anti-site disorder. The binding
energies of clusters relevant to Schottky disorder are
substantial as shown in Table VII. The results from
clusters involved in anti-site disorder are summarized
in Table VIII. These clusters are less significant than the
clusters involved in the Schottky processes. Overall, the
binding energies calculated here are significant enough
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TABLE VI I I Defect clusters associated with anti-site disorder

Cluster binding energies (eV)

Compound [Ca′Fe:Fe·Ca]
× [Ca′Al :Al ·Ca]

× [Fe×Al :Al×Fe]
×

CA — 0.60 —
C2A — 0.85 —
C3A — 1.01 —
CA2 — 4.26 —
CA6 — 1.27 —
CF 0.33 — —
C2F 0.82 — —
C4AF 0.71 1.15 0.01

to markedly influence transport in these materials with
the transport species becoming trapped in the form of
such clusters. The results also suggest that the formation
of clusters is important for the solution of oxides in
cement phase materials.

4. Conclusions
Atomistic-scale simulation has provided information
that would be otherwise impractical to obtain about
defect processes in Ca–Al–Fe–O cement-phase com-
pounds. This was made possible by employing a con-
sistent set of potentials that accurately reproduce the
variety of structures found in this set of materials. The
following summarizes the observations made using this
technique.

1. For most of the materials studied, intrinsic
Schottky and Frenkel enthalpies are so high that these
types of disorder reactions are not important. The most
notable exception to this is calcium Frenkel disorder
in C3A. Additionally, calcium Schottky disorder in CF
and C3A, and oxygen Frenkel disorder in C2A, C4AF,
and C2F may be of minor significance as compared with
extrinsic disorder brought about by impurities.

2. The very low Al–Fe anti-site enthalpy calculated
for C4AF is in good agreement with the large degree of
sublattice disorder observed by experiment.

3. The enthalpies associated with Ca–Fe and Ca–Al
anti-site disorder throughout these materials are moder-
ately high, indicating that this disorder is only of minor
importance.

4. Binding enthalpies are generally high, implying
that any impurity ions would become associated into
clusters. This has important implications for the trans-
port of ions through these lattices.
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